Multivariate continuous-time autoregressive moving-average processes on cones
نویسندگان
چکیده
In this article we study multivariate continuous-time autoregressive moving-average (MCARMA) processes with values in convex cones. More specifically, introduce matrix-valued MCARMA L\'evy noise and present necessary sufficient conditions for from class to be cone valued. We derive specific hands-on the following two cases: First, classical on $\mathbb{R}_{d}$ positive orthant $\mathbb{R}_{d}^{+}$. Second, real square matrices taking of symmetric semi-definite matrices. Both cases are relevant applications give several examples positivity ensuring parameter specifications. addition above, discuss capability model spot covariance process stochastic volatility models. justify relevance based models by an exemplary analysis second order structure well-balanced Ornstein-Uhlenbeck
منابع مشابه
On continuous-time autoregressive fractionally integrated moving average processes
In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...
متن کاملDissertation Time - Frequency - Autoregressive - Moving - Average Modeling of Nonstationary Processes
This thesis introduces time-frequency-autoregressive-moving-average (TFARMA) models for underspread nonstationary stochastic processes (i.e., nonstationary processes with rapidly decaying TF correlations). TFARMAmodels are parsimonious as well as physically intuitive and meaningful because they are formulated in terms of time shifts (delays) and Doppler frequency shifts. They are a subclass of ...
متن کاملChapter 3: Autoregressive and moving average processes
2 Moving average models Definition. The moving average model of order q, or MA(q), is defined to be Xt = t + θ1 t−1 + θ2 t−2 + · · ·+ θq t−q, where t i.i.d. ∼ N(0, σ). Remarks: 1. Without loss of generality, we assume the mean of the process to be zero. 2. Here θ1, . . . , θq (θq 6= 0) are the parameters of the model. 3. Sometimes it suffices to assume that t ∼WN(0, σ). Here we assume normality...
متن کاملBootstrapping continuous-time autoregressive processes
We develop a bootstrap procedure for Lévy-driven continuous-time autoregressive (CAR) processes observed at discrete regularly-spaced times. It is well known that a regularly sampled stationary Ornstein–Uhlenbeck process [i.e. a CAR(1) process] has a discrete-time autoregressive representation with i.i.d. noise. Based on this representation a simple bootstrap procedure can be found. Since regul...
متن کاملBayesian analysis of autoregressive moving average processes with unknown orders
A Bayesian model selection for modelling a time series by an autoregressive–moving–average model (ARMA) is presented. The posterior distribution of unknown parameters and the selected orders are obtained by the Markov chain Monte Carlo (MCMC) method. An MCMC algorithm that represents the parameters of the model as a point process has been implemented. The method is illustrated on simulated seri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2023
ISSN: ['1879-209X', '0304-4149']
DOI: https://doi.org/10.1016/j.spa.2023.05.003